East Coast

Past time to go big

Block Island Wind Farm

Block Island Wind Farm

Old Higgins Farm Windmill, in Brewster, Mass., on Cape Cod. It was built in 1795 to grind grain. Many New England towns had windmills.

Old Higgins Farm Windmill, in Brewster, Mass., on Cape Cod. It was built in 1795 to grind grain. Many New England towns had windmills.

“By partnering with our neighbor states with which we share tightly connected economies and transportation systems, we can make a more significant impact on climate change while creating jobs and growing the economy as a result.’’

 

-- Massachusetts Gov. Charlie Baker

 

 

Massachusetts, Connecticut and Rhode Island and the District of Columbia have signed a pact  to tax the carbon in vehicle fuels sold within their borders and use the revenues from the higher gasoline prices to cut transportation carbon-dioxide emissions 26 percent by 2032. Gasoline taxes would rise perhaps 5 to 9 cents in the first year of the program -- 2022.

 

Of course, this move, whose most important leader right now is Massachusetts’s estimable Republican governor,  Charlie Baker, can only be  a start, oasbut as the signs of global warming multiply, other East Coast states are expected to soon join what’s called the Transportation Climate Initiative.

The three  states account for 73 percent of total emissions in New England, 76 percent of vehicles, and 70 to 80 percent of the region’s gross domestic product.

The money would go into such things as expanding and otherwise improving mass transit (which especially helps poorer people), increasing the number of charging stations for electric vehicles, consumer rebates for electric and low-emission vehicles and making transportation infrastructure more resilient against the effects of global warming, especially, I suppose, along the sea and rivers, where storms would do the most damage.]

Of course, some people will complain, especially those driving SUVs, but big weather disasters will tend to dilute the complaints over time. Getting off fossil fuels will make New England more prosperous and healthier over the next decade. For that matter, I predict that most U.S. vehicles will be electric by 2030.

Eventually, reactionary politics will have to be overcome and the entire nation adopt something like the Transportation Climate Initiative.

Annie Sherman: Offshore wind turbines can benefit fishing

Wind turbines of Denmark

Wind turbines of Denmark

From ecoRI News

Since the Block Island Wind Farm, four years ago, pioneered U.S. offshore wind development, the United States has positioned itself to become a world producer of electricity in this renewable-energy sector. Turning the wind’s kinetic energy into electrical power is gaining popularity, so much so that 2,000 offshore wind turbines could be erected off the East Coast in the next 10 years.

But with growth comes questions and resistance, so scientists and environmental advocates across the country and in Rhode Island are seeking opportunities to expand offshore renewable energy while reducing environmental risks.

With world-class fisheries and wildlife in Ocean State waters, the potential for victory seems on par with ruin. So it’s vital to understand how the trifecta interacts symbiotically: offshore wind facilities, current recreational and commercial uses, and the existing ecosystem.

“As we experience this growth, we see that the state and local decision-makers, resource users, and other end users are struggling to keep up with the decisions they’re having to make and also understand the potential impact it may have on existing activities and natural wildlife,” said Jennifer McCann, director of U.S. coastal programs at the University of Rhode Island’s Coastal Resources Center. “While some places in Rhode Island, Massachusetts, and Europe have been working in this game for many years, there are others who are just beginning to ask questions and get their bearings on this growth. Given this growth is likely, [we need to] better understand how can we minimize the effects on existing future uses and wildlife.”

The development of offshore renewable energy has already exploded in Europe. WindEurope estimates that it now has offshore wind capacity of 22.1 gigawatts from 5,047 grid-connected offshore wind turbines across 12 countries, with 502 turbines installed last year alone. Scientists and researchers there already are coming to terms with the risk and impacts, both positive and negative, of offshore wind turbines.

Sharing their knowledge about the U.S. market in a June webinar, moderated by McCann, with Rhode Island Sea Grant and URI’s Graduate School of Oceanography, two experts said the impacts on the environment are steep. They advocated for proper management and reduced activity to maintain a healthy marine environment.

Jan Vanaverbeke, a senior scientist at the Royal Belgian Institute for Natural Sciences, and Emma Sheehan, a senior research fellow at the University of Plymouth in the United Kingdom, presented more than a decade of research from investigating the change in biological diversity and ecological interactions resulting from offshore renewable-energy structures.

Their research began at the smallest scale, with tiny marine animals and microorganisms inhabiting a turbine when it’s first installed, Vanaverbeke said. Huge numbers of this diverse marine life make a home at the base of these 600-foot-high, 200-ton turbines affixed to the seabed. This area also attracts other animals such as fish and crustaceans. They noted how offshore aquaculture and offshore energy infrastructure can support each other and improve the diversity of marine ecosystems.

“Abiotic effects, like currents, vibration, noise, and electromagnetic fields, will have an affect on the biology,” Vanaverbeke said. “In this case, it would deliver food for society, because certain fish species, like cod and pouting, were attracted to turbines. … What we see in the scour protection layer [a layer of material to protect erosion around the turbine] shows increased diversity, giving additional complexity and shelter for species.”

He also saw evidence of this conflicted cause-and-effect relationship when additional marine animals were drawn to the turbines, as they affected sediment and water quality. Taking organic matter and food from the water, they also excrete matter, which sinks to the seabed and negatively alters the sedimentary environment.

“Offshore wind farms actually do change the habitat and the environment,” Vanaverbeke said. “Research will inform you of consequences of those changes, and how to understand what this change will mean for the larger marine ecosystem. We actually want to apply this knowledge for marine spatial planning. We can see where to put the wind farm, where is the best place from an ecosystem perspective. We have to know about carrying capacity for aquaculture activities. We can also use this knowledge for a better wind farm design, in such a way that they would contribute to nature restoration and conservation, or we can play around with the complexity of the scour protection layer and use it as a nature restoration tool.”

Sheehan expanded on their research with her analysis of ecological interactions between offshore installations and the potential benefits of ambitious management. Highlighting Marine Protected Areas (MPA), a fresh or saltwater zone that is restricted to human activity, Sheehan focused on ecosystem-based fisheries management and offshore installations that have the potential to be super MPAs, by excluding destructive fishing practices and adding habitat.

She noted the term “ocean sprawl,” similar to urban sprawl, which is becoming more widely known as pressure increases for offshore energy installations.

Sheehan said it’s important to consider the benthos and their associated fish communities, because they are the foundation for the entire marine ecosystem.

Reducing or eliminating bottom fishing, which she said is destructive of rocky reefs and sediment habitats, is one way to protect these important marine areas. In one MPA she has been studying for 13 years, scallop dredging was prohibited, which ultimately allowed reef-associated species to return.

Since the siting of most offshore wind facilities is on these habitats, Sheehan advocated for installations to be progressively managed like de facto MPAs, to support essential fish habitats and protect the seabed.

“There is lots of potential for environmental benefit of co-locating offshore aquaculture with offshore renewables from an environmental point of view, but also from an economic point of view, because sharing space is going to be the only way we can move forward for this industry,” Sheehan said. “If bottom-towed fishing is excluded from the whole site, offshore developments can have positive effects on the ecosystem, increase ecosystem services, support other fisheries, and help us move toward a carbon-neutral society.”

Annie Sherman is a freelance journalist based in Newport, R.I., covering the environment, food, local business, and travel in the Ocean State and New England. She is the former editor of Newport Life magazine, and author of Legendary Locals of Newport.

 

Llewellyn King: Internet of Things and climate change rushing at us

Internet_of_Things.jpg


The votes that will be cast on Election Day might be the most important votes cast in a long while, but they’re unlikely to change our lives as dramatically as two great tsunamis that are hurtling toward us.

Change Agent Tsunami One is being driven by science. If you thought that the Digital Revolution had reached its apex with the smartphone, or perhaps Instagram, get back to thinking room.

The Internet of Things is on the march and nothing appears to be able or wants to stop it.

Soon you’ll have “smart cities.” In the beginning, these will be the result of evolutionary change. Things like 5G, the next generation of mobile technology, and Wi-Fi using “short towers” — in fact, a lot of small towers — will make Wi-Fi available to everyone in a city.

Then things speed up.

Already, the Digital Revolution is responsible for these lifestyle changers: barcodes, Uber and Lyft, urban bicycle systems and, yes, those scooters that are whizzing around many cities. Oh, throw in Airbnb.

In store is automated transportation with autonomous electric cars and trucks, automated package delivery by drone. Electric small aircraft and automated pilotless air taxis will take you from your home to the airport. Keeping all these moving objects from knocking into each other or into us will take further electronic wizardry.

All of this will come under the rubric of smart cities. The only impediment to this stunning new world of efficiency and convenience is a cyberattack that takes down the electric grid for days, weeks or longer. Every horror that can be conceived would be unleashed: no communications, no food, no gas, no money, no sewage and no water. We’d all be reduced to the state of primitive man without the skills of the Stone Age.

In its way, cyberattack is a greater threat than anything posed by the arsenals of China and Russia. We might perish without a bang, just a whimper. An ignoble but terrible exit.

Change Agent Tsunami Two is climate change. This has all the makings of a global catastrophe. Low-lying countries might not be able to mocytunt the defenses needed just to deal with ocean rise. They’d have move to higher ground in other countries.

Especially vulnerable is the East Coast of the United States. While the Trump administration may be in formal denial, the agencies of government are preparing within their ability to go against the politicians. National labs have maps and charts of the devastation that would result from a sea rise of several feet. I saw the first of these maps myself at the Lawrence Livermore National Laboratory in California decades ago. I thought they were fanciful. Now I think they were prescient.

The Navy is particularly alarmed because, as Axios has reported, the sea rise along the East Coast is likely to be worse than in other parts of the world, due to tidal and other geographical factors. Particularly, the Navy is worried about bases in low-lying coastal cities such as Norfolk, Va., and is looking at scenarios as to where these could be relocated efficiently and in time.

Other climate change horrors include tropical bugs in northern climes, mutating viruses, more storms, droughts and tens of millions of people driven from their homes, i.e. refugees.

I have no doubt that we’ll lick the cyberwarfare threat. Technology can take on technology. Many good minds in government, industry and the universities are hard at work. Climate change is a many-orders-of-magnitude more implacable problem.

A very different future is ahead, one that isn’t on the ballot — not this Nov. 6, but it will be in future years. Great new political issues are in the making; issues that are outside of the party-speak of this election, but which will emerge soon. In 2020? Possibly.

 

On Twitter: @llewellynking2
Llewellyn King is executive producer and host of
White House Chronicle, on PBS. He’s based in Rhode Island and Washington, D.C.

Internet_of_Things.svg.png